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THE VALUE OF A PREPAYMENT OPTION  
IN A FIXED RATE MORTGAGE:  

INSIGHTS FROM BREAKEVEN VOLATILITY

1. INTRODUCTION

A fixed rate loan – i.e. a contract wherein the interest rate paid by the client   is 
fixed throughout the duration of the contract – carries three main sources of risk 
for the originating bank. The first one, as in any other loan, there is the credit 
risk related to the default of the borrower. The second one, there is interest rate 
risk, namely the risk that market rates increase and exceed the rate at which the 
contract was concluded. Finally, there is a prepayment, or callability, risk related 
to the fact that borrowers may decide to pay their loan back prior to its maturity 
i.e. prepay . f originators hedge the interest rate risk of their mortgage portfolios 

with simple interest rate swaps, then whenever such prepayment occurs, they have 
to unwind some or all of the hedging positions which – given that prepayment tends 
to occur at lower interest rates – results in losses. The cost of a fixed rate mortgage 
– the interest rate being agreed in the contract – should compensate the originator 
for bearing these three sources of risk. Therefore, the rate on a fixed rate mortgage 
can be decomposed into three elements  i  fixed for floating interest rate swap 
rate with maturity corresponding to the maturity of the loan  ii  credit spread  
iii  pre payment spread. ut of these three, this is the prepayment spread that is 

most difficult to estimate. After all, the borrower’s option to call the loan at face 

* ulius  ab ecki works at niversity of arsaw and ational ank of oland  no part of this 
article should be taken to represent the official view of the .



Safe Bank
4(69)/2017

66

value is essentially American in nature, i.e. it can be exercised at any time prior to 
maturity. Hence, estimating the fair value of a prepayment option requires not only 
a pricing model to handle the early exercise feature, but also a rich enough universe 
of plain vanilla calibration instruments – in this case ideally co-terminal European 
interest rate swap options, i.e. swaptions1. A basic requirement for any model used 
for valuing exotic derivatives – such as options with early exercise features – is that 
it prices exotics consistently with their simpler counterparts quoted on the market. 
This ensures that the price of an illiquid exotic product is “at par” with prices of 
plain vanilla liquid products often used to hedge or replicate it. In the absence 
of such a liquid market in basic interest rate derivatives, estimates of prepayment 
option value can be biased and the resulting prepayment spreads distorted. Thus, 
underdevelopment of an interest rate derivatives market can be a hindrance for the 
fixed rate mortgages and other products with callability features.

This paper tries to contribute to the vast literature on managing prepayment 
risk2 by proposing a methodology for estimating the value of a prepayment option 
in the absence of a deep and liquid market in interest rate swaptions. In such 
circumstances there is no implied volatility surface of plain vanilla European 
swaptions with which the more exotic early-exercise pricing model can be made to 
agree, which compounds the uncertainty surrounding the valuation of American- 
style payoffs. The proposed approach builds on the concept of breakeven volatility 
Dupire3, i.e. the volatility level at which the price of the option on a historical 
date may be replicated by the P&L from continuously delta hedging it until expiry. 
Although Dupire originally proposed the concept for commodities and currencies 
with illiquid or non-existent options markets4, we show that it can be readily applied 
to options on interest rate underlyings, and in particular swaptions. Such breakeven 
volatilities can be calculated for different swaption maturities,  strike  rates and 
underlying swap tenors yielding a full co-terminal swaption volatility surface 
conditioned on the realized historical zero coupon bond prices and swap rates. By 
construction, the resulting implied volatilities will be backward-looking. However, 

1 This is the so called option-theoretic or endogenous approach to the estimation of prepayment 
risk, see e.g. Davidson A., Levin A., Mortgage Valuation Models: Embedded Options, Risk, and 
Uncertainty, Oxford University Press 2014 or Qu D., Manufacturing and managing customer-
driven derivatives, John Wiley & Sons, Chichester 2016, West Sussex, United Kingdom chap. 19 
for a comprehensive discussion and alternative perspectives.

2 See e.g. Kau J.B., Keenan D.C., An overview of the option-theoretic pricing of mortgages, Journal 
of Housing Research 1995, 6(2), 217; Collin-Dufresne P., Harding J.P., A closed form formula for 
valuing mortgages, The Journal of Real Estate Finance and Economics 1999, 19(2), 133–146; 
Agarwal S., Driscoll J.C., Laibson D.I., Optimal Mortgage Refinancing: A Closed-Form Solution, 
Journal of Money, Credit and Banking 2013, 45(4), 591–622.

3 B. Dupire, Pricing with a smile, Risk 1994, 7(1), 18–20.
4 Dupire’s breakeven volatility approach has been implemented in the widely-used Bloomberg 

system e.g. for Nigerian Naira and Kenyan Shilling.
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they can serve as a rough guide for where volatility levels should be given historical 
data. Applying this method to the Polish historical interest rate curve, we find 
that the implied (breakeven) volatility surface exhibits a pronounced dependence 
both on strike and swaption term/tenor, i.e. so called smile and term structure. 
The dependence of swaption implied volatilities on strike is a well documented 
phenomenon in markets where swaption quotes are available. However, it is also 
inconsistent with the Black-Scholes valuation framework as it suggests that some 
swaptions are priced as if the same underlying swap rate moved by 4 bp a day 
and some – 8 bp a day, which is nonsense. To accommodate market patterns while 
retaining the completeness and simplicity of the Black-Scholes framework we 
propose a local volatility model in which the swap rate volatility is made time and 
state dependent, consistently with the breakeven volatility surface. Concretely, 
building on Gatarek and Jab ecki5 we derive an equation for the unique state- 
dependent diffusion coefficient consistent with breakeven swaption volatilities, 
linking it to the dynamics of the entire interest rate curve. We then use the diffusion 
to price the prepayment option, qua a Bermudan receiver swaption implicitly 
contained in a fixed rate mortgage contract using data from the Polish market as 
of January 2017. The mortgage spread component related to the prepayment option 
price proves to be quite significant, stressing the importance of an adequate risk 
management of the inherent callability feature and possibly explains why fixed rate 
mortgage products have so far struggled to develop in Poland.

2. NOTATION AND DEFINITIONS

2.1. Financial market instruments

We start by defining the main instruments and a notation we are going to work 
with throughout. At this point, our approach is an independent model, but we assume 
an interest rate model of the Heath-Jarrow-Morton type to facilitate the presentation.
Concretely, let P(t,T) be time t price of a zero coupon bond maturing at time T such 
that P(t,t) = 1 for every t. We assume there exists a frictionless and arbitrage-free 
market for zero coupon bonds such that P(t,T) exists for every 0 < t < T <  
and for a given t, P(t,T) is differentiable with respect to maturity time T. The 
instantaneous forward rate f(t,T) with maturity T contracted at t is defined by

 f(t, T ) ≡ −∂ lnP (t, T )

∂T
⇐⇒ P (t, T ) = exp

(
−

ˆ T
t

f(t, s)ds

)
. (Eq. 2.1)

5 D. Gatarek, J. Jab ecki, A local volatility model for swaptions smile, Journal of Computational 
Finance 2016, Forthcoming.
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The instantaneous spot rate r(t) – i.e. the short rate – is defined by the condition

 r(t) ≡ f(t, t) (Eq. 2.2)

and can be interpreted as capturing the locally risk-free return from a continuously 
compounded money market account B(t) ≡ exp

{´ t
0
r(s)ds

}
. The short rate is 

not to be confused with a continuously compounded spot interest rate, R(t,T), 
defined as

 R(t, T ) ≡ − lnP (t, T )

δ(t, T )
, (Eq. 2.3)

where , year fraction, stands for the chosen time measure between t and T. 
Finally, we also introduce simply compounded spot interest rate, referred to as 
LIBOR rate L(t,T): 

 L(t, T ) ≡ 1− P (t, T )

δ(t, T )P (t, T )
, (Eq. 2.4)

along with a time t forward rate between two dates T and S: 

 L(t;T, S) ≡ P (t, T )− P (t, S)

δ(T, S)P (t, S)
. (Eq. 2.5)

Define now a uniformly spaced tenor structure: 

 0 = T0 < T1 < ... < TM  (Eq. 2.6)

and set n = Tn – Tn–1 for n = 1, …, M. A fixed-for-floating interest rate swap 
(IRS) with unit notional, fixed rate (coupon) K, and a specified tenor structure 
T = {Tn}βn=α+1 is a contract whereby two parties exchange differently indexed 
cash flows over a pre-agreed time span. Specifically, on each date Tn ∈ T , the fixed 
leg pays n K, whereas the floating leg pays the floating LIBOR rate given by the 
formula:

 
1− P (Tn−1, Tn)

δnP (Tn−1, Tn)
δn. (Eq. 2.7)

When the fixed leg is paid, the IRS is called a “payer,” conversely the swap is called 
a “receiver.” The forward swap rate S , (t) corresponding to the tenor structure T  
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is the rate in the fixed leg that sets it equal to the floating leg and hence makes 
the net present value of the transaction equal zero:

 Sα,β(t) ≡ P (t, Tα)− P (t, Tβ)∑β
n=α+1 P (t, Tn)δn

. (Eq. 2.8)

When setting  = 0, it can be immediately noticed that the spot swap rate for 
a contract maturing at T  reduces to (1− P (0, Tβ))/

∑β
n=1 P (0, Tn)δn .

A European payer (receiver) swaption with strike K, maturity T  and tenor 
T  – T  (henceforth referred to also as T  × (T  – T ), or T -into-(T  – T )) is simply 
an option that gives the holder the right to enter at T  into a payer (receiver) swap 
which matures at T  and entitles to pay (receive) fixed rate K in exchange for 
floating LIBOR rate on the tenor dates T . Thus, the payoff of the payer swaption 
with notional unit is given by

 max (Sα,β(Tα)−K, 0)

β∑
i=α+1

δiP (Tα, Ti). (Eq. 2.9)

The expression 
∑β
i=α+1 δiP (Tα, Ti) is sometimes called the annuity or present 

value per basis point (PVBP). Before the crisis it was a market practice to quote 
swaptions prices using a Black-like formula. Nowadays, to account for the all-too-
real possibility of negative rates, market participants have shifted to using the so 
called Bachelier or normal model instead, in which the risk-neutral dynamics of 
the forward swap rate is normal rather than log-normal. In this approach, the time 
zero price of the above payer swaption is given by:

PSα,β(0,K) =
  (Eq. 2.10)

=

β∑
i=α+1

δiP (0, Ti)

[
(Sα,β(0)−K)Φ

(
Sα,β(0)−K

σ
√
Tα

)
+ ϕ

(
Sα,β(0)−K

σ
√
Tα

)
σ
√

Tα

]
,

where  and  are the Gaussian cumulative and probability distribution functions 
respectively.

Finally, a Bermudan receiver (payer) swaption is an option to enter at any 
time Ti, i  { ,  + 1, …,  – 1}, into a swap which terminates at T  and gives the 
holder the right to receive (pay) a pre-determined fixed rate K in exchange for 
floating Libor. The period up to T  is called the lockout or no-call period, and hence 
a Bermudan swaption with final exercise date T  – 1 and first exercise T  is often 
called “T  no-call T ,” or “T nc T .” For instance, a 11nc1 swaption with annually 
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spaced exercise dates can be trained at the beginning of any year, starting from 
year 1. By exercising the option, the holder enters a swap starting at the time of 
exercise (i.e. years 1, 2, 3,..., 10) and ending at year 116.

2.2. A loan contract

To fix ideas we focus in this paper on mortgage loans – i.e. loans taken for the 
purchase of a dwelling – since they tend to have relatively long maturities (ranging 
up to 30 years) that make the choice of a fixed vs. floating rate and the inherent 
prepayment optionality most acute. However, since we focus on the economics 
of the transaction rather than its legal characteristics, the ensuing discussion of 
the loan contract nature is purposefully somewhat vague and general. Broadly 
speaking, a mortgage loan is simply a contract whereby one party (“Client”) 
borrows a certain notional amount N at T0 from another party (“Bank”) and 
commits to return it to the lender by TN under the conditions stipulated in the 
contract. A loan contract will therefore specify i.a. the following features: 

 applicable interest rate: this can be either a fixed rate K set at T0 for the entire 
duration of the contract or a variable (floating) rate determined according to 
the prevailing market conditions which typically amounts to using the going 
3M LIBOR (EURIBOR, WIBOR etc.) rate plus a spread compensating the bank 
for credit risk and potentially reflecting also other business considerations 
(competitive pressure etc.)7; 

 amortization schedule: the capital can be either returned in a single payment 
at maturity – with only periodic interest cash flows in the interim – or repaid 
gradually at a predefined pace in equal or decreasing installments; to facilitate 
the presentation the focus is put below on the case of constant installment only, 
but the results carry over naturally also to other mortgage types;

 early termination conditions: whether and at what extra charge – if any – the 
outstanding loan can be paid back (or refinanced) prior to maturity, so called 
prepayment.

In a competitive market the pricing of a loan is determined in such a way that 
both the bank and the client are in principle indifferent between the fixed and 
floating rate mortgages with the same maturity, amortization schedule etc. This 
equivalence of the two rates ensures that no risk-less arbitrage is possible and the 
quoted fixed rate reflects the time-zero path of forward LIBOR rates. Thus, the net 

6 Alternatively, such structure can be called a 1Y × 10Y, or one-into-ten, receiver, exercisable 
annually after the first exercise date.

7 Hybrid options are also possible whereby the interest rate is fixed for some initial part of the 
contract duration (e.g. 5 or 10 years) and floating thereafter. Since this specification does not 
present any additional technical difficulties, it is ignored below to ease the presentation.
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present value of installments for a client paying on a floating rate basis – i.e. LIBOR 
plus spread – should be equal to the net present value of installments calculated 
according to a fixed rate K. Let us assume for the sake of the demonstration 
that the mortgage in question is non-amortizing (“interest rate only”) with no 
prepayment allowed. Then the remarks above can be formally restated as:

 N

M∑
i=1

δi ((L(T0;Ti−1, Ti) + s)−K)P (T0, Ti) = 0. (Eq. 2.11)

This in turn implies that the fixed rate K on an interest rate only mortgage loan is 
equal to the par forward swap rate plus spread and hence – given the spread s – can 
be calculated using the term structure of interest rates using:

 K =

∑M
i=1 δiL(T0;Ti−1, Ti)P (T0, Ti)∑M

i=1 δiP (T0, Ti)
+ s =

1− P (T0, TM )∑M
i=1 δiP (T0, Ti)

+ s. (Eq. 2.12)

In the more common case of a mortgage with amortizing capital {Ni}Mi=1, (2.12) 
would feature instead a par forward swap rate for a contract with notional 
corresponding to the chosen amortization schedule8. Equation (2.12) makes clear 
that the interest rate risk inherent in a fixed rate mortgage without prepayment 
option can be perfectly offset using an interest rate swap with corresponding 
maturity and notional. 

When clients are allowed to prepay their outstanding notional equation (2.12) 
should be adjusted by the spread component sopt reflecting the fair value of the 
prepayment option:

 Kfixed = K + s + sprepay . (Eq. 2.13)

Note that since the prepayment option gives the client the right to “put” the 
loan principal to the bank, it is effectively a Bermudan receiver swaption, RBS, 
with first exercise date T1 and swap termination date TM. This involves a circular 
reference, since sprepay depends on the value of the swaption and the value of the 
swaption in turn depends on the strike (fixed rate of the loan). The circularity 
can be overcome through the use of the following iterative procedure. Start by 
calculating RBS(0) for the initial strike K+s. Since sprepay represents the annuity-
weighted value of the swaption, we have:

8 However, since this case does not alter anything in the substance of the argument but makes 
presentation less streamlined, it is omitted below.
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 s(1)prepay =
RBS(0)∑M

i=1 δiP (T0, Ti)
. (Eq. 2.14)

We can now re-price the swaption at a new strike, K + s + s
(1)
prepay , obtaining 

RBS(1) which by analogy with (2.14) yields s(2)prepay . We continue in this fashion 
until the calibration stabilizes and the difference s(n)prepay − s

(n+1)
prepay is, say, of the 

order of one basis point. 

3. BREAKEVEN VOLATILITY

The concept of breakeven volatility was originally introduced in an unpublished 
note by Dupire (2006) who raised the problem of determining implied volatilities 
for options with different strikes and maturities given as sole information the 
historical price series of the underlying instrument9. Classical volatility estimation 
techniques typically yield a single number defined as the annualized standard 
deviation of log-returns:

 σhist ≡

√√√√ 252

N − 1

(
N∑
i=1

ln

(
Si

Si−1

)2

−
(

ln (SN/S0)

N

)2
)

. (Eq. 3.1)

where Si is the price of the underlying on day i. This procedure – inherently 
based on the assumption of constant volatility – would produce a single volatility 
parameter for all options on S. However, there is ample evidence that volatility is 
not in fact constant, and as a result the market participants tend to price options in 
such a way that different strike levels and maturities are associated with different 
implied volatility levels for the underlying – so called implied volatility “smile” or 
“skew” (Figure 1).

To account for this, Dupire10 suggests an approach based on back-testing of 
delta-hedged option strategies. The underlying idea bases on the recognition due 
to Black and Scholes11 that dynamically hedging an option by removing its delta, 
i.e. first-order dependence on the price of the underlying instrument – the process 
referred to as “delta hedging” – transforms an initial premium into the final payoff 

 9 Thus, Dupire: writes: “Many people have devoted considerable time and effort to develop mod-
els that are calibrated to the market, usually in view of pricing exotic options. However, a pos-
sibly more fundamental question is: what the market should be?”

10 B. Dupire, Pricing…, op. cit.
11 F. Black, M. Scholes, The pricing of options and corporate liabilities, Journal of Political Econ-

omy 1973, 81(3), 637–654.
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through replication. Thus, if one knows the volatility of a stock, one can replicate 
an option payoff exactly by continuously rebalancing a portfolio consisting of delta 
units of the underlying instrument and a risk-free bond. If no arbitrage is possible, 
then the value of the option should be equal to the cost of the replication strategy. 
In other words, given a path of the underlying instrument, hedging an option 
along this path using the model delta in principle allows to replicate the option. 
Leveraging this insight, if we sell an option for a premium corresponding to some 
volatility  and then use the  to calculate the option’s delta along a path of the 
underlying instrument then by rebalancing the replication portfolio we finally end 
up with a profit or loss that depends on the volatility parameter . The value of  
that sets this profit and loss equal to zero is called the breakeven volatility. Figure 2 
demonstrates this procedure for a stylized case of a call option on a generic asset S 
with strike price K = 110 and 1 year maturity. Here, breakeven volatility turns 
out to be 15.33%. Crucially, a different strike would lead to a different breakeven 
volatility. For instance, with a strike K = 80 instead, profit-canceling volatility 
would be just 3.5%. An alternative approach of producing a strike-dependent 
volatility pattern would consist in modeling the time series as a parametrized 
stochastic process then estimating the parameters to eventually price swaptions. 
A popular example is the Heston12 (1993) model which features a classic Black-

12 S.L. Heston, A closed-form solution for options with stochastic volatility with applications to 
bond and currency options, Review of Financial Studies 1993, 6(2), 327–343.

Figure 1. Strike-dependent implied volatility pattern for S&P500 
and EURPLN options with maturity 3M (as of 18 May 2017)
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Scholes dynamics for the underlying instrument, but with a stochastic variance 
which follows a mean-reverting process of the type proposed by Cox, Ingersoll and 
Ross13. Atiya and Wall14 show how to obtain the maximum likelihood estimates of 
Heston model parameters (in the physical measure). However, the problem with 
such an approach is that parameter estimates are maturity-specific, so that option 
prices with different maturities are priced using different sets of parameters. 
Moreover, the model is significantly more numerically involved and drops the 
completeness inherent in the Black-Scholes framework by an introduced new 
stochastic driver for the volatility process, which complicates delta hedging.

Figure 2. The stylized path of the underlying instrument (the left hand 
panel) and the associated breakeven volatility (the right hand panel)

3.1. Swaption delta hedging

We now show how to adapt the Dupire’s breakeven volatility concept to the case 
of interest rate swaptions. One might recall that the market quotes option prices 
using the Bachelier or normal model so that the fair value of a payer swaption is given 
by (2.10), i.e. expressed explicitly as the sum of the underlying swap and a portfolio 
of zero coupon bonds – the annuity. By analogy with the Black-Scholes approach, 
these two quantities become hedging instruments and the hedge ratios can be 
inferred directly from the equation. In particular, the hedge replicating the swaption

13 Heston model is in fact a continuous time analogue of models in the GARCH family. J.C. Cox, 
J.E. Ingersoll Jr, S.A. Ross, A theory of the term structure of interest rates, Econometrica: Jour-
nal of the Econometric Society 1985, pp. 385–407.

14 A.F. Atiya, S. Wall, An analytic approximation of the likelihood function for the Heston model 
volatility estimation problem, Quantitative Finance 2009, 9(3), 289–296.
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(short position in a payer) consists in going long Δ = Φ
(
Sα,β(0)−K
σ
√
Tα

)
 units of the 

underlying forward swap contract and going short ϕ
(
Sα,β(0)−K
σ
√
Tα

)
σ
√
Tα  units of 

the PVBP. The portfolio positions are then adjusted at discrete intervals as time 
goes by and the forward swap rate changes. Any net amount is invested/borrowed 
in the bond portfolio to ensure the portfolio is self-financing. If the replication 
was performed perfectly, with continuous re-hedging, the difference between the 
value of the hedging portfolio and terminal swaption payoff – i.e. the profit/loss, 
P&L – would be exactly zero, irrespective of the path taken by the swap rate. This 
observation justifies the statement that the Bachelier’s model provides a fair value 
of the swaption. Insofar as the replication strategy involves discrete rather than 
continuous rebalancing the P&L may deviate from zero but should be distributed 
symmetrically around it.

As an illustration considers a 1Y-into-5Y payer swaption in the Polish market 
struck at the money and sold at implied normal volatility of 70 bp. 

We simulate the replication error using 10,000 paths for the underlying swap 
rate and use Polish interest rate curve data as of 30 December 2016. The simulation 
is carried out on a set of discrete equi-spaced times between time t0 = 0 and 
swaption maturity, T1 = 1. The hedging proceeds as follows:

 at t0 = 0 short one unit of the 1 x 5 swaption, PS1,6(0), long 0 units of the 
underlying forward swap and short ϕ (0)σ

√
Tα  units of the PV BP0 so that the 

value of the portfolio (net cash flow from all transactions) is zero;
 at t1 the underlying swap rate grows to S1,6(t1) and swaption price changes to 

PS1,6(t1); thus we go long 1 – 0 units of the underlying forward swap and 
borrow/invest the resulting cash flow in the annuity bond portfolio whose value 
in the meantime has grown to PV BP1;

 at each successive step until swaption expiration the hedge ratio is adjusted 
to keep the portfolio delta neutral and the resulting cash flows are invested/
borrowed in the numeraire account.

Figure 3 shows the simulated PnL distribution in two cases – when the rebalancing 
is performed once per week (52 times per year) and daily (250 rehedgings). As 
expected, both distributions are centered around zero, but more frequent hedging 
produces visibly less dispersed the results. 
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Figure 3. Effect of delta hedging the 1 x 5 swaption: simulated profit 
and loss distributions (10,000 Monte Carlo runs)

3.2 Breakeven volatility for PLN swaptions

As of this writing there is no liquid market for swaptions involving Polish 
zloty (PLN). Hence, to come up with an assessment of what swaption prices could 
conceivably be, we can resort to the estimation of breakeven volatility surface using 
historical interest rate data. As explained above, in this approach the volatility at 
a given strike is chosen in a way to nullify the P&L accrued by daily delta-hedging 
of a swaption at that strike. Since our ultimate goal is to price a prepayment option 
in a mortgage contract we need estimates of volatilities for swap rates terminating 
at a common fixed date corresponding to the maturity of the mortgage which we set 
to 20 years15. Thus, we will estimate implied breakeven volatilities of the following 
19 co-terminal swaptions: 1 x 19, 2 x 18, 3 x 17,...,19 x 1 as of January 2017. To mimic 
the convention in developed derivatives markets and provide a sufficiently broad 
set of calibration instruments, for each term/tenor we derive swaption implied 
volatilities for a range of strikes covering the par forward swap rate (the at-the-
money, ATM contract) and ATM±200bp, ±100bp, ±50bp and ±25bp. For each term 
T=1,2,...,19 years we select a corresponding historical time point t such that t+T 
is exactly the end of our data sample, i.e. 30 December 2016. We then calculate the 

15 According to the Polish Bank Association (ZBP) data, roughly 64% of mortgages taken out in 
q4 2016 had contractual maturity between 25 and 35 years; 25% had maturity between 15 and 
25 years and 11% – maturity below 15 years.
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Bachelier’s price of each swaption plugging a trial volatility  into (2.10) and use 
historical interest rate data to calculate the P&L from delta hedging the swaption 
daily from origination at t until maturity on 30 December 2016. The breakeven 
volatility is then that choice of  which sets the P&L from delta hedging, equals  
to zero and it is calculated numerically using a standard root finding algorithm. 
Since breakeven volatility is an estimate, it will generally depend on the time 
window chosen for the delta hedging. This calls for using averaged estimates over 
multiple non-overlapping historical time windows, which however is problematic 
given the long maturities of the swaptions considered. For instance, for the 19x1 
swaption there is only one long enough time window. Yet, even if observations from 
the distant past were available, they would likely come from a different volatility 
regime so their practical relevance could be questionable. Moreover, even for 
shorter maturities for which historical data is available, running an iterative root- 
finding algorithm separately for each time window would be very costly in terms of 
computational time. Therefore, we decide against averaging breakeven volatilities, 
keeping in mind the approximate nature of the estimates. Figure 4 shows a sample 
breakeven volatility smile for the 1x19 swaption plotted against an actual implied 
volatility for 1x19 swaptions quoted in the most liquid US dollar market (sourced 
from Bloomberg as of 30 December 2016). Clearly, the pattern of the estimated 
breakeven volatilities is consistent with levels and shapes in more liquid markets. 
Figure 5 presents the entire estimated breakeven volatility surface for all term/
tenor pairs. We may conclude that the surface exhibits plausible volatility levels and 
smile-like shapes and hence can serve as a basis for calibration.

Figure 4. Estimated breakeven volatility smile for the 1x19 swaption 
in Poland and actual implied volatility smile for the 1x19 USD swaption 
(as of 30 December 2017)
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Figure 5. The estimated PLN normal breakeven volatility surface 
as of 1 January 2017 (fixed swap terminal is 20Y)

4. PRICING PREPAYMENT OPTION

As we have seen above, the estimated breakeven volatilities exhibit a consistent 
smile-like pattern across the maturity spectrum. This is clearly inconsistent with 
the Black-Scholes/Bachelier framework in which volatility is an inherent feature 
of the underlying instrument and should not exhibit dependence on strike. We 
overcome this problem by using a local, or state- and time-dependent, volatility 
version of the Cheyette model as suggested by Gatarek, Jab ecki, and Qu16 and 
Gatarek and Jab ecki17 whose reasoning we briefly summarize below adapting it 
to the case of co-terminal swaptions.

4.1 Cheyette local volatility model

Note that the introduction of non-parametric volatility in interest rate space 
is non-trivial. By convention, the fixing date of the swap coincides with the 
maturity of the option, i.e. swaptions with maturities T  and T  + 1 are written on 
two different underlyings evolving according to two different (forward) processes. 
As a result, unlike in traditional asset classes, options on swap rates are quoted 
only for one expiry and swaption prices cannot be differentiated with respect to 

16 D. Gatarek, J. Jab ecki, D. Qu, Non-parametric local volatility formula for interest rate swap-
tions, Risk 2016, pp. 120–124.

17 D. Gatarek, J. Jab ecki, A local volatility model…, op. cit.
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expiration time. It is thus prima facie impossible to analyze the time evolution of 
swaption implied distribution functions and recover from them – via the Forward-
Planck equation – the unique swap rate diffusion generating them, as originally 
proposed for equities by Dupire18. We circumvent this problem by introducing 
a fixed-tenor rolling maturity swap rate and deriving a spot process for it. 

Let 0 < T  < T  be two maturities and consider the forward swap rate with 
fixing date T  and maturity T  as defined in (2.8) (from here on, without loss 
of generality we shall, for simplicity, use continuous-time rather than discrete 
convention). The forward swap rate is, by definition, a martingale under the 
measure Qα,β  associated to the annuity numeraire Nα,β(t) ≡

´ Tβ
Tα

P (t, s)ds, i.e. 
S , (t) has the driftless dynamics under Qα,β: 

 dSα,β(t) = σα,β(t)dWα,β(t), (Eq. 4.1)

where ,  is a continuous stochastic process and W , (t) is a Brownian motion 
under Qα,β . 

For a given swap maturity date T, we define the fixed-terminal rolling swap 
rate as 

 ST (t) ≡ St,T (t) =
1− P (t, T )´ T
t

P (t, s)ds
 (Eq. 4.2)

Note that ST(t) is a spot instrument, albeit not a traded one, and it is not 
a martingale. However, using (4.1), its dynamics can be derived to be: 

 dST (t) = Qt,T (ST , t)dt + σt,T (t)dW t,T (t) (Eq. 4.3)

where Qt,T (ST , t) ≡ ∂Su,T (t)
∂u

∣∣∣∣
u=t

 and WtT(u) is a Brownian motion under the 
measure Qt,T  defined as 

 dWt,T (u) = dW (u) +

´ T
t

B(u, s)Σ(u, s)ds´ T
t

B(u, s)ds
du. (Eq. 4.4)

Having done some algebra, Qt,T(ST, t) can be represented as

 Qt,T (ST , t) = ST (t)

[
ST (t)− r(t)

1− P (t, T )

]
. (Eq. 4.5)

18 B. Dupire, Pricing…, op. cit.
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Let us assume now now that the forward swap rate volatility is a deterministic 
function of the swap rate and time, t,T(t)  t,T(t, ST). It can be shown that t,T(t, ST) 
is given in terms of swaptions prices by the following Dupire-type equation (since 
the common swap maturity T is fixed, swaption dependence on T is suppressed):

 σt,T (t,K) =

√
∂tC(t,K) + ∂KC(t,K) (Qt,T (ST , t) + q(t, T ))

1
2∂

2
KC(t,K)

, (Eq. 4.6)

where q(t,T) is an adjustment due to the differentiation of swaption prices with 
respect to maturity. Since q(t,T) has been found to be very small (Gatarek and 
Jab ecki19; Qu20), in practice the local volatility function can be approximated by:

 σt,T (t,K) ≈
√

∂tC(t,K) + ∂KC(t,K)Qt,T (ST , t)
1
2∂

2
KC(t,K)

. (Eq. 4.7)

Through straightforward differentiation of the undiscounted Bachelier swaption 
formula C = (FT−K)Φ((FT−K)/σ/

√
T )+ϕ((FT−K)/σ/

√
T )σ

√
T , equation (4.7) 

can also be recast in terms of normal implied volatilities 21: 

 σt,T (t,K) =

√√√√√ 2∂Σ∂t + σ
t + 2Q(t, T ) ∂σ∂K

1
σt

(
1 + (FT (t)−K)

σ
∂σ
∂K

)2
+ ∂2σ
∂K2

, (Eq. 4.8)

where FT (t) = St,T (0) exp(
´ t
0
Q(s, T )ds) is the forward rolling swap rate and (·), 

(·) are standard normal CDF and PDF respectively. Plugging (4.8) into (4.3) yields 
local volatility diffusion for the rolling swap rate. 

Pricing interest rate derivatives in general requires not only the simulation 
of swap rate paths, but a fully-fledged interest rate model calibrated to the time 
zero interest rate curve. Fortunately, swap rate local volatility (4.8) can be easily 
virtually fed into any generic model, such as e.g. Libor Market Model or Cheyette22 

19 D. Gatarek, J. Jab ecki, A local volatility model…, op. cit.
20 D. Qu, Manufacturing and managing customer-driven derivatives, John Wiley & Sons, Chich-

ester 2016, West Sussex, United Kingdom.
21 Strictly speaking, these volatilities will be associated with the rolling swap dynamics (4.3), 

whereas implied volatilities quoted by the market are those of the forward swap process (4.1). 
Fortunately, under the approximation q(t,T) = 0, the two volatility parameters coincide.

22 O. Cheyette, Term structure dynamics and mortgage valuation, The Journal of Fixed Income 
1992, 1(4), 28–41.
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model. The latter is a particularly convenient choice as it admits a two-dimensional 
Markovian representation of the entire yield curve dynamics. Specifically, the 
Cheyette model is given by:

 P (t, T ) =
P (0, T )

P (0, t)
exp

(
− 1

κ

(
1− e−κ(T−t)

)
x(t)− 1

2κ2

(
1− e−κ(T−t)

)2
y(t)

)
, (Eq. 4.9)

where x(t) and y(t) are state variables and κ is a constant positive number 
representing mean reversion speed. The mean reversion spead. The two state 
variables have the following dynamics:

 dx(t) = (y(t) +−κx(t)) dt + σ(t)dW (t) (Eq. 4.10)

 dy(t) =
(
σ2(t)− 2κy(t)

)
dt (Eq. 4.11)

State variable x(t) has the interpretation of a centered short rate, while y(t) is an 
upward drift representing forward curve steepening due to volatility (a “convexity 
correction”). Since rolling swap rates are a function of bond prices, straightforward 
application of Ito’s lemma reveals that the volatilities of the swap rate and the 
short rate in the Cheyette model are linked through:

 σ(t) = (∂xS(t, x(t), y(t))
−1

σt,T (t). (Eq. 4.12)

With swap rate local volatility stripped from the breakeven volatility surface 
(Figure 5) via (4.8) and then mapped to the short rate volatility through (4.12), 
Cheyette model can be implemented in a standard Monte Carlo pricer. The 
procedure mimics closely the well-established routine of calibrating local volatility 
models in equity or FX space (cf. Gatarek and Jab ecki23 for details; see also Qu24 
for a PDE implementation). 

4.2. Bermudan swaption pricing

As discussed/ presented above, the prepayment option contained in a fixed rate 
mortgage is of Bermudan character. The author explained above how it can be 
handled in a Monte Carlo setting. Consider a “T  no-call T ” Bermudan receiver 
swaption introduced above. The time t value of such a Bermudan swaption will 
be denoted RBS , (t, K). Assuming no prior exercise, at any time point Tn, the 

23 D. Gatarek, J. Jab ecki, A local volatility model…, op. cit.
24 D. Qu, Manufacturing and managing…, op. cit.
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swaption holder has the right to receive the exercise value Ve of the swaption, i.e. 
present value of the underlying swap:

 Ve(Tn) ≡ (K − Sn,β(Tn))
+

β∑
k=n+1

P (Tn, Tk)δk. (Eq. 4.13)

The exercise value has to be compared to the so called continuation value, Vc, 
of holding the option beyond Tn:

 Vc(Tn) ≡ E

(
RBSα,β(Tn+1,K)

∣∣∣∣Sn,β(Tn)

)
. (Eq. 4.14)

The value of the Bermudan swaption can now be given in terms of (4.13) and 
(4.14) via a dynamic programming recursion:

 RBSα,β(Tβ−1,K) = P (Tβ−1, Tβ)δβ (K − Sβ−1,β(Tβ−1))
+

  (Eq. 4.15)
 RBSα,β(Tj ,K) = max (Ve(Tj), Vc(Tj))

for j =  – 2,  – 3, …, n. The evaluation of (4.15) proceeds backward in time: 
at T  – 1 the value of the Bermudan swaption is known and determined by the 
standard swaption payoff. This allows us to update the continuation value at T  – 2 
by discounting and compare it to the exercise value prevailing at the time. The 
procedure of comparing “backwardly-cumulated” continuation value with the 
immediate exercise value and deciding upon swaption exercise is repeated until 
the initial valuation date is reached, at which point the algorithm yields a price 
estimate for the Bermudan swaption. Handling such a problem in a Monte Carlo 
setting can be challenging. The idea going back to Longstaff and Schwartz25 is 
that the continuation value at each time step can be approximated by its least-
squares conditional forecast, V̂c , thus allowing us to resolve the decision rule (4.15) 
without “seeing into the future.” Specifically, the continuation value is represented 
as a linear combination of M basis functions (·) (see Brigo and Mercurio26 for an 
excellent general discussion of the method): 

 Vc(Tn) ≈ V̂c(Tn) ≡
M∑
j=1

λnjψj(Tn), (Eq. 4.16)

25 F.A. Longstaff, E.S. Schwartz, Valuing American options by simulation: a simple least-squares 
approach, Review of Financial studies 2001, 14(1), 113–147.

26 D. Brigo, F. Mercurio, Interest rate models-theory and practice: with smile, inflation and credit, 
Springer Science & Business Media 2007.
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with weights j determined by least-squares regression. This requires first 
simulating a sufficient number N of yield curve scenarios which produces a set 
of swap rates (S , (Tn), S  + 1, (Tn), …, S  – 1, (Tn))k, n = ,…, , k = 1, …, N. 
With “perfect foresight” knowledge of each simulated path k, the exercise and 
continuation values, as well as Bermudan swaption prices RBS , (Ti, K), can be 
evaluated recursively along each path using (4.15). To improve quality of fit and run-
time performance only in-the-money paths are considered for the estimation of the 
weights j. With the estimated regression coefficients, the same Monte Carlo swap 
rate paths are then used to determine the approximate continuation values V̂c(Tn) 
and Bermudan swaption payoffs for each path. It should be stressed, however, that 
this produces a lower bound estimate of the Bermudan swaption price. 

4.3. Numerical example

To demonstrate the viability of our method we price a prepayment option 
contained in a 20-year Polish zloty mortgage issued at the beginning of 2017. To 
facilitate presentation (but with no substantial loss in generality) let us assume the 
mortgage has a simple interest-only (no amortization) structure and a principal of 
PLN 250,000, which roughly corresponds to the average value of mortgage loans 
taken out in Poland in 2016. We also assume interest is payable on a semi- annual 
basis. Using interest rate curve data as of 30 December 2016 we find that the 
0.5y-into-19.5y swap rate equals 0.036. From Section 2.2 one can recall that a fixed 
rate mortgage rate can be decomposed into the swap rate with corresponding 
maturity, credit spread (which we take to include also other, non-credit business 
considerations) and the spread compensating the bank for the prepayment risk 
inherent in the fixed rate mortgage. Credit spread levels can be inferred from the 
NBP’s database on the new sale of floating rate loans as the difference between 
the quoted interest rate on a floating rate mortgage and the WIBOR 3M rate. 
Although credit exposure in a fixed rate mortgage could differ from that in a floating 
rate, the floating rate spread is actually the best readily available approximation 
to the potential spread in a fixed rate mortgage. The spread as of January 2017 
stood at 280 bp, so that the fixed rate in a mortgage without prepayment option 
would be 6.40%.

To estimate the prepayment spread – and thus price in the prepayment option 
– we follow the iterative approach laid out in Section 2.2. This entails pricing 
a 20-year Bermudan swaption, to which end we employ the Cheyette local volatility 
model calibrated to the breakeven volatility surface and simulate optimal stopping 
time as explained in Section 4.2. The LSMC algorithm leads to fairly quick and 
stable convergence, so that using 10,000 paths with a time step of 1/12 seems 
satisfactory. The spread is found numerically to equal 184 bp and the total value 
of the prepayment option is PLN 155,475 – or over 60% of the mortgage capital. 
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This puts the fixed rate at 8.24% vs. 4.50% on floating rate mortgages in January 
2017. The breakdown of the calculations is shown in Table 1.

Table 1. The simulated costs of a fixed rate mortgage (interest rate curve 
data for the Polish and USD market as of 30 December 2016)

Swap 
rate

Credit 
spread

FRM 
(no prep.)

Prep. 
spread FRM

Prep. 
option 
price

(share of 
notional)

Poland 
(BEV)

3.60% 2.80% 6.40% 1.84% 8.24% 62.19%

USA 2.66% 1.00% 3.66% 1.38% 5.04% 46.84%

Note: FRM (no prep.) is the fixed rate mortgage rate if prepayment is not allowed; Prep. spread is 
the prepayment spread and FRM denotes the fixed rate mortgage rate accounting for the possibility 
of prepayment.

To provide a very basic robustness check of the results, the author compares 
compare the numbers found for Poland based on a breakeven volatility surface 
(Figure 5) to an analogous estimate for the United States based on swaption implied 
volatilities quoted in the USD market as of January 2017. While mortgage credit 
spreads for the US are not directly available, some indication as to their level may 
be provided by the margin for 5/1-year adjustable rate mortgage quoted by Freddie 
Mac. This mortgage offers a fixed rate for an initial period of 5 years and then 
resets to an index plus margin fixed once per year. ARM mortgage spread stood at 
about 270 bp in January 2017 but at least part of that reflects prepayment spread. 
For benchmarking purposes we thus set the credit spread in our 20y fixed rate 
mortgage at 100 bp. This results in a prepayment spread of 138 bp and a mortgage 
rate of 5.04%. This is close to the actual levels of the fixed rates on mortgages in the 
US market (e.g. the 30-year mortgage rate stood at 4.30% in January 2017, which 
given that the swap curve is virtually flat between the 20y–30y tenors should be 
roughly similar to the cost of a 20y mortgage for which unfortunately no national 
averages are reported).

Finally, to see how sensitive the total cost of prepayment option is to the 
assumed credit spread, we reprice the Bermudan option implicit in the respective 
contracts assuming credit spread levels in the range 0–300 bp (Figure 6). The 
results indicate that even if banks were to charge no credit spread or other 
margins, the cost of the prepayment option would still be substantial – about 25% 
and 20% of the mortgage notional for Poland and the US respectively. This suggests 
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that, especially in Poland where interest rates have historically exhibited relatively 
high volatility, the mortgage spread component related to the prepayment option 
tends to be quite significant, which underscores the importance of an adequate risk 
management of the inherent callability feature as indeed suggested by regulators.

Figure 6. The price of a prepayment option (a Bermudan receiver) 
in a 20Y mortgage as a function of loan credit spread

5. CONCLUSIONS

The goal of this paper was to suggest a methodology for estimating the value 
of a prepayment option in cases where a deep and liquid market in interest rate 
swaptions is not available. In such circumstances, it is a priori not clear how 
to calibrate the prepayment option pricing model, which compounds valuation 
uncertainty and possibly hinders the development of fixed rate mortgages. The 
proposed approach consists in adapting the concept of breakeven volatility to 
interest rate swaptions. In particular, to estimate what the unknown swaption 
volatilities  could  be,  we  suggested  back-testing  a  delta  hedged  position  in 
a theoretical swaption to find numerically the volatility level, which nullifies any 
accumulated hedging profit/loss. Since at that volatility the hedger breaks even, its 
level can be considered “fair” and serves as a basis for calibration. The proposed 
method has two main uses. 

Firstly, it can be used to offer guidance on the likely cost of a fixed rate mortgage 
in markets where no such products have developed so far. This paper looks at 
the specific example of Poland, where the “only game in town” is a floating rate 
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mortgage. Specifically, having produced such a breakeven volatility surface for 
the Polish zloty interest rate market, we have employed the calibrated robust 
Bermudan swaption pricing model to estimate the fair value of prepayment spread 
in a stylized 20-year fixed rate mortgage. The prepayment spread component proves 
to be quite significant, stressing the importance of an adequate risk management 
of the inherent callability feature and possibly explains why fixed rate mortgage 
products have struggled to develop in Poland so far.

Secondly, our method can also be used in developed mortgage markets, where 
fixed rate contracts are available, to benchmark or assess the degree of potential 
mispricing in mortgage contracts, driven by the prepayment option.

Abstract

This paper presents a novel approach of estimating the value of a prepayment 
option in a fixed rate loan based on the concept of breakeven volatility. Since the 
prepayment option can be exercised essentially at any time prior to maturity, its 
valuing requires: (i) a pricing model sophisticated enough to handle its early exercise 
feature; and (ii) a broad set of interest rate derivatives prices to which the model 
can be calibrated to preclude arbitrage. This paper shows that when the derivatives 
market is not developed enough to ensure calibration, a good approximation of the 
fair value of a prepayment option can be derived by constructing the “missing” 
derivatives prices by back-testing delta hedged swaptions. This produces a “fair” 
volatility surface conditioned on the realized historical zero coupon bond prices and 
swap rates, which can be used to calibrate the prepayment option pricing model. 
The paper presents numerical examples for the Polish market as of January 2017. 
The mortgage spread component related to the prepayment option price proves 
to be quite significant, stressing the importance of an adequate risk management 
of the inherent callability feature and possibly explains why fixed rate mortgage 
products have struggled to develop in Poland so far.

Key words: prepayment, fixed rate loan, Bermudan swaption, breakeven volatility, 
Cheyette model
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